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I. Introduction.

In dealing with the problem of finding the coefficients of the 
general quadratic potential function of molecules for the in

ternal degrees of freedom it is usually found, that the experimental 
material available is insufficient for a determination of all the 
force-constants. The well-known ‘valence-force’ and ‘central-force’ 
models are generally applied means of avoiding this difficulty. 
However, the use of these models very often is evidently wrong, 
e. g. as demonstrated by the author as regards benzene h.

In order to find some relations between the theoretically inde
pendent force-constants of the general quadratic potential func
tion, based upon less rigorous assumptions than those laid down 
in the valence-force or central-force systems, the author looked 
for such rides in the case of HCN, CH± and C2H21 2) and succeeded 
in putting forward an ‘empirical rule’ valid for the three molecules 
mentioned: If one or more hydrogen atoms connected with the 
same carbon atom are displaced towards the adjoining carbon 
atom, the forces acting upon the other atoms of the molecule 
could as a good approximation be put equal to zero.

1) B. Bak, Det Kgl. Danske Vidensk. Selskab, mat.-fys. Medd. XXII, 9 (1945).
2) B. Bak, ibid. XXII, 16 (1946).

To see if a more general validity of this rule could be stated, 
the potential function of ethane was investigated. Ethane is the 
prototype of alifatic hydrocarbons with a carbon-chain, which 
means that the results obtained are of more than special interest. 
The result of the investigation of ethane may be briefly summar
ized as follows:

As far as only vibrations, non-degenerate with respect to the 
threefold axis of ethane, are considered, the ‘empirical rule’ helps 
to find a set of force-constants which are probably correct. But 
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in the case of degenerate vibrations the application of the rule 
gives false results. This, of course, means that the rule should 
be handled with much care as its domain of validity is un
determined.

Even if only a partial knowledge of the potential function 
of ethane is obtained, such knowledge is of importance, loo. It 
can be foreseen that during the next years the study of the spectra 
of the partially deuterated ethanes will be among the principal 
means by which to decide finally whether ethane has the I)3(t or 
the I)3h configuration1}. For the interpretation of those spectra even 
a partial knowledge of the potential function of ethane is of 
importance as all isotopic molecules obey the same potential 
function.

II. Symmetry Considerations.
The problem of finding the correct stereochemical model of 

ethane has been the subject of numerous papers during this 
decade. Il seems to he a firmly established result that no free 
rotation occurs around the carbon-carbon bond, but that three 
intermediate positions of minimum potential energy exist. It has 
not, however, been decided whether the D3d or the D.ih configu
ration is the more correct one. The mathematical technique and 
the subsequent discussion of the vibrational spectra are approx
imately the same in both cases, as will appear from the follow
ing treatment.

1. Symmetry Coordinates and Potential Function 
for the Did Model.

Fig. 1 shows in double projection how the ethane molecule 
is placed in an æz/z-coordinate system.

In table I the characters of the normal modes of vibration 
for molecules of the ethane type (point group D3d) are given.

O A discussion of this problem is given by H. Mark in his book: ‘Physical 
Chemistry of High Polymeric Systems’, p. 53, New York 1940.
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Table I. Point group I).}d.

Covering 
operation

Symmetry
class
..............

■^lu....................

Symmetry 
elements 

particularly 
studied

1
1
1
1
2
2

The effect of the various symmetry operations on the compo
nents of atomic displacements from the equilibrium position is:

The inversion:
x^ “-æo *Vo X5

y 3 — I/o 1/2 -- 1/5

^3 " ~ Z6 -2 “— 7-**5

<--> — .r0

171 —I/o
— z0

x4 <-> — x7

U4 — 17?
z4 Z1
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The Ci-operation :

æo æi X2<-*æ5

J/2^ —{/5 J/3^— ?/7

Z1 Z2 Z5 Z3 <-> Z7

x6 
y^—y& 
z4 z6 •

The equations for the combined operations such as (C2z) 
are easily constructed.

By means of the equations above it is now possible to find a 
set of symmetry coordinates, fulfilling the requirements of table 
I. As to details in the construction of these symmetry coordinates 
reference must be made to an earlier paper by the author1'.

Table II.

Symmetry 
class Symmetry coordinates

A10
Si = |/ 3 (æ3 — x4 — x6 + X7) — 2i/o + 1/3 + y4 + 2 yb — y$ — yi
So = — Zo — z3 — Z4 + Z5 + Zq + Z7
S3 = Zo — Z1

A iu S4 = — 2x¿ + X3 + Xt — 2.T5 + x6 + X7 + |/3 (—1/3 + 1/4 — y& + 1/7)

A211
S5 = — 3 (zo + Zi) +" Z2 + Z3 + Z4 + Z5 + Zg + Z7
So = |/3(ir8 —æ4 + æ6 —æ-) —2z/s + {/3 +z/4 —2z/5 + z/6 4-!/7)

Eg

Si a = — b ({/O — Z/l) — Z/2 — Z/3 — Z/4 + Z/5 + I/o + Í/?
S7i, = —3/j(x0— .Ti) — 3x2—3x3— 3x4 + 3x5 + 3x6 + 3x7

Ss« = 4 1 2 - (i/i — z/o) + 4 Z2 — 2 Z3 —-2z4 — 4 z5 4_ 2 z6 + 2z^

S8b = 12 |/2 ^(x! —x0) — 6 |z3 z3 + 6 |/ÏÏz4 + 6 |/ÏÏz6 —6 |/Kz7

Son = |/ 3 (x3 — X4 — X6 + X7) + 21/2 — Z/2 — 1/3 — 21/5 + I/o + Z/7 
S9b = — 2x2 + æ3 + æ4 + 2x6 — æo — x7 + P (1/3 —1/4 — i/o + 1/7)

EU

Sioa = J/ 3 (X3 — X4 + x6 — X7) + 21/2 — 1/3 — y4 4 2 yb — i/o — 1/7
Sioft = — 2x2 + x3 + X4 — 2x5 + x6 + X7 +|/3 (1/3 — z/4 + z/o — 1/7)
Sila = — 3 (i/o + 1/1) + 1/2 + Z/3 + Z/4 + 1/5 + Z/e + Z/7
Sil b = — 3 (x0 + æl) + X2 + æ3 + x4 + X5 + X6 + X7
S'i2a — 12zo + Z3 + Z4 — 2 Z5 + Zo + Z7
S12Z> = 1 3 (Z3— Z4 + Zo — Z7)

In these definitions 2 a is the C-C-distance, s the C-/7-distance 
, . 3 a + s ...and b = . Pure symmetry considerations of course only

determines each symmetry coordinate except an arbitrary factor,
1) B. Bak, Det Kgl. Danske Vidensk. Selskab, mat.-fys. Medd. XXII, 16 (1946). 
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but the factors used in tlie above expressions are chosen so as 
to make the potential energy function as simple as possible.

As the potential function must be invariant during any cover
ing operation of the molecule, we find that:

+ Cf22 (*^110*^120^

2. Symmetry Coordinates and Potential Function 
for the ¿>3Zi-Model.

Fig. 2 shows how the ethane molecule is placed in the co
ordinate system if belonging to the I).ih point group.

In table III the characters of the normal modes of vibration 
are given.

Table III. Point group Z)3h.

Covering 
operation E 2 Cg 2 S8 3 Co* 3*,

Num
ber of 
vib.

Zero 
freq.

Degree 
of deg.

Spect. 
activ.

Fre
quency 
desig.

Symmetry 
class

¿'i................ 1 1 1 1 1 1 3 1 E
.4' ................ 1 1 1

1
1 — 1 1 0 E. _

2
A"................ 1 — 1 — 1 1 — 1 1 1 ^41

^2................ 1 — 1 1 -1 — 1 1 2 Tt 1 I
E' ................ 2 2 — 1 — 1 0 0 3 2 El
E"................ 2 — 2 -1 1 0 0 3 EVE„ 2 E

Symmetry 
elements 

particularly 
studied

C3 S3 z-M
<>2 <r 

X

The effects of the various symmetry operations on the compo
nents of atomic displacements from the equilibrium positions are:



Nr. 1 9

Z
4^

y
Fig. 2.



10 Nr. 1

The

The

æo i/o X*2

!/o í/i J/4i/o J/2

~1 1

|/3/3 J/3
J/7æ3 æ4 J/3J/2

J/7J/3 J/3 2

|/3
.X’c

El
J/7æ2O 2

J/7i/o Í/2 2
Z0 Zl zl ¿2

111
x3

J/3

z3

J/3J/3
æo

33 3

1
J//

1
æ1_2

(ï_ operation:
æQ 

J/o^J/1

-1*^1
2 3 2

|/3

2
1 

æ°—2
1

æ4~2

z4->z3

x0~^ ~0 *2 -4

z5->z7

z6~> z2 z7-^—Z3

Z3 ~*■ Z2

~ZO

1
æ3_ 2

1
X*7 2

7~* z6-

1
æ2—9 Í/2

yj/o
1
2 æ7

J/3

J/4 ' 2

1
- X(

J/3

J/3
oJ7l

1
i/i-*V æo —2 i/o

1 J/3
2 æj 2

J/3 1
- æ5—o

Í/6 ' 2

J/6 2

Cg-operation :

_læ
2 0 0

J/3
2

1
_2æ4" 
J/3
2J/i-> «

1 J/3
~2 2~~T ya
J/3 1
— -r2—«

The Sg-operation :
1 J/3

æo“* — g æi~ 2 1,1

J/3 1
~2~ xi —2 th

1 I
®6-* —2X7“ 2

J/3 1
J/s^“ æ7~ «

J/3
TJ/4

-læ _L
2 2 2

El
2

1
J/i"^^ æ3_ 2 i/;i

1
x^ — 2 ^3— J/3

El

— ^7

2 2 J/5 æ4~* 2 æ° 2 i/o —-x4- 2 J/4

J/3 1 J/3 1 J/3 1
J/4T æ5_2 Í/5 J/4- r æ6_2 J/ö J/5-*-y ^4- 2

"f> Z4~ *6 z5~^ Z4
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The Co-operation :

In table IV the symmetry coordinates are given.

Table IV.

Symmetry 
class Symmetry coordinates

a;
51 = |/3 (x3 — Xj 4~x3 — x7) — - y-’ 4~ y3 4~ y 4 — 2 y-0 4- y& 4~ y7
52 = — Z2 — Z3 — + Zß 4- Zi
5;1 = Zo —Zi

A'i 5’4 = 2o?2 4" æs 4~ æ4 4~ 2x5 — xø — x7 4~ K 3 (—1/3 4- j/4 4~ y& — y~)

a2 55 = -2.3 (z0 4- zi) 4- za 4- z3 4- z4 4- z5 4- z0 4- Z?
5g = |/3(xs —Xi —Xa 4- X7)—21/2 4“ ÿ3 4" ÿ4 4" 2z/5 — i/o — Ul

E'

Si a = 3 ( i/o 4- í/i ) — .y 2 —y3 — y 4 —1/5 — yo —y-
Si b = 3 (.To 4- æl) — æ2 — x3 — Xj — X5 — Xo — X7
Ssa = 4 z2 — 2 z3 — 2 Z4 — 4 Z5 4~ 2 Zo 4~ 2 Z7
5s b = 2 y 3 (— z3 4- Z4 4~ Zo — Z7)
5o„ = |'3 (x3 — a?4 4- x6 — X7) 4- 21/2 — ya — ÍA 4- 2 y6 — iJo — Ui
S6b = — 2x._> 4- x3 4- .t4 — 2x6 4- .To 4- æ7 4- |/3 (y3 —1/4 4- i/o — i/7)

E"

5ioa = lz 3 (.t3 — t4 — .To 4~ x7) 4- 2 i/o — y 3 — y 4 — 21/5 4~ y« 4” y?
Siob = — 2.t2 4- x3 4~ X4 4~ 2x5—Xÿ—x-, 4- J/3 ( y3 —1/4 — y0 4- y?) 
511 a = ft (yo — yi) 4- ys 4- ys + yt — yb — yo — yi
511 5 = ft (Xo — Xi) 4- Xo 4- X3 4- X4 — X5 — X’o — x7

5’i2a = 2 | 2 - (i/o — yi) — 2zo 4- z3 4- Z4 —2z5 4~ z3 T Z7

5’125 = 2 |/2 — (xo — Xi) 4- |/3 (z3 — Z4 4“ Zo — Z7)
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Table

2 ai--------X
12 «4 Ck

a7 =

I)3(l con

(7 4 2 «2 --------X
3 do = 0

/«// z
24

figuration «5 a0 Za3 — m(: X

ni „in g
3(mc + 3mfl)'c «10

= O

Roots: xi x-í *3

Symmetry 
class

Symmetry 
class

*5 *6

A2„

^2

7)3h con
tigu ration Same as above

Roots: xi x-2 x3

Same
as 

above
Same as above
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V.

mcmn

32 (1) /n"+24 '”c. , 4 y2±b

NimHmc
- X Cl\x -]--- rz------------X

Niamc #15

4|/2.s7i _ mHb2 + 3 mc
TF--------- x ¿Niamc #12 »T XNimHmc #1(1

777 /7
#15 a16 2 (713 —

12

dj H ( 24 b2 + 96 (1) ) + 72 mc

Ö20 #21

mHmcCL-^O 2 (71 «------------ X
3 M #•22

#21 #22

= 0

M = mass of C//3.

E„

*9

2 #17 —
777// 
---- X
12 #20 #21 2(Zu — '3M“’' 0,1 015

#20 2O18

8ia) m#+6/nc

N2iTiHmc
. 2|/2s/i

#2° 1-- ÏT-------XA2a777c = 0 #14
o '#7/
2 #12----------- x24 #16

Û21
,2|/2s/i „

#22 + Xt X 2 (7]gN2dm(:
m i¡b~ “F 3 itIq

N2mHmc #15 #16 2(713 —
777//
---- X
12

mH ( 6 Z>2 + 24Í^2) + 18mc

2 — 9 •
777c77l/“/

*10 *11 *12

M = mass of C//3.

Xy Xÿ Xÿ
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The symmetry coordinates of table IV have been chosen in 
such a way that the potential function is formulated exactly 
as in the case of the Z)3d-model, given on page 8. Formally 
one can operate with the same potential function in both models 
but it should be remembered that the physical meaning of the 
force-constants is not the same in the two cases.

III. Relations between Force-Constants 
and Vibration Frequencies.

These equations are found in the usual way by means of 
the Lagrangian equations. The results are given in table V.

As appears from table V the symmetry coordinates have been 
chosen so as to make all calculations in the non-degenerate 
classes formally identical. This is a great advantage because this 
paper mainly deals with these classes. In the degenerate classes 
there are differences, but there are also fundamental similarities 
between the equations to be solved.

IV. Numerical Calculations.
1. Experimental Material.

Infrared and Raman data have been published by many
authors.

Infrared data.
Levin and Mayer, Journ. Opt. Soc. Am. 16, 137 (1928) (CoHe)
Benedict, Morikawa, Barnes, and Taylor, J. ('.hem. Phys. 5, 1

(1937) ( - )
Bartholome and Karweil, Naturwis. 25, 476 (1937) ( - )
('.rawford, Avery, and Linnett, J. Chem. Phys. 6, 682 (1938) ( - )
Fred. Stitt, J. Chem. Phys. 7, 297 (1939) (Qöo)

Raman data.

Daure, Trans. Far. Soc. 25, 825 (1929) (CzHo)
Bhagavantam, Ind. Journ. Phys. 6, 595 (1932) ( - )
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Lewis and Houston, Phys. Bev. 44, 903 (1933) 
Bhagavantam, Proc. Ind. Acad. Sei. A, 2, 86 (1935)
Glöckler and Beni-rew, J. Chem. Phys. 6, 295 (1938)
Glöckler and Renfrew, J. Chem. Phys. 6, 409 (1938)
Crawford, Avery, and Linnett, J. Chem. Phys. 6, 682 (1938) 
Goubeau and Karweil, Zeits. Phys. Chem. B, 40, 376 (1938) 
Fred Stitt, J. Chem. Phys. 7, 297 (1939)

(C2H6) 
( - ) 
( - ) 
( - ) 
( - ) 
( - ) 
(C2D6)

Fred Stitt was the first to find the very important data 
from C2Z)6. These highly facilitate the assignment of frequen
cies. A careful examination of all the available literature reveals 
that the assignment of frequencies made by Stitt must be con
sidered as far the most probable at present. In table VI the 
results of Stitt, therefore, are given.

Table VI.

Ihd
configuration c2h0 CjD0 ^3/i

configuration

Fl 993 852 Fl

1'2 1375 1158 To

F8 2925 2115 F3

F4 310 — F4

J'S 1380 1072 F5

Fß 2925 2100 fs

F10 827 601 r;

Hl 1465 1102 Fa

fi2 2980 2237 F0

F? 1170 970 F10

F8 1460 1055 Fll

Fg 2960 2225 FI2

2. Discussion of Various Models.

The frequencies of table VI deviate from the ‘harmonical’ 
frequencies of the molecule (the frequencies for zero amplitude). 
In cases where this deviation could be experimentally determined 
il h as been shown that the harmonical frequencies are roughly 
about 2 per cent, higher than those experimentally determined 
for vibrations in which hydrogen and carbon atoms take part.
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The deviation is of course greater in the case of C2HG than 
in the case of C2I)f, because of the greater amplitudes in the 
former case. To give an impression of the size of the deviations 
the ‘product rule’ of Teller can he used. The results are given 
in table VII.

Table VII.

^3d
Product rule 
ratio calc.

Experimentally 
determined

A'i 2.00 1.92
^lu Ai 1.41 —
■^2u A2 1.83 1.79

E" 2.36 2.22
E E' 2.58 2.44

In papers where force-constants are calculated the experimen
tally determined frequencies are generally used as if they were 
‘harmonical’, that is, a molecular model carrying out harmonical 
vibrations with the experimentally determined frequencies is 
considered, and it is postulated that the conditions ot torce in 
such a model are approximately the same as in the real mole
cule. In the papers hitherto published by the author1* this proce
dure has met with no difficulties. In the present case, however, 
difficulties arise in the degenerate symmetry classes. 11 the ex
perimentally determined frequencies are used in the calculations 
in the usual way, imaginary force-constants result. 1 his means 
that in the case of ethane a model corresponding to those used 
at the description of other molecules such as benzene, methane, 
and acetylene does not exist. To get a model with real values 
of the force-constants we must alter the experimentally deter
mined frequencies slightly before starting the calculations. '1 he 
set of frequencies used must of course obey the above-mentioned 
product rule, and they should deviate as little as possible from 
the experimental ones. But as such correction of the frequencies 
could be carried through in many different ways, the important 
question arises what rôle this arbitrariness plays for the numer
ical size of the force-constants. In this paper we shall try to

1) loc. cit. 
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give a partial answer to this problem by making some of the 
calculations on the basis of two different sets of frequencies 
that are to be considered beforehand of equal correctness.

The more fundamental problem concerning the difference 
between the various models and the ‘real’ molecule cannot be 
answered until a description of the vibrating molecule by means 
of a potential function involving higher powers of the symmetry 
coordinates has been given. But there is no possibility of giving 
such a description at the present stage of chemical physics.

3. Force-Constants of the Non-Degenerate Classes.

Solving the determinantal equations of the non degenerate 
classes with respect to the unknown force-constants we get the
eleven equations:

«3

a2 4’4«1

— 4 °1«2

4 a2a3 + 16 ata3 —
.2 9— 4 a5 — a,,

4 ata2a3 +
— cqaj — a2fl5— ada4

«8

xix2z3n,c/,,n

72

72

(5)

(6)

(7)

(x5+x6)) (8)

I). Ktfl. Danske Vidensk. Selskab, Mat. fy s. Medd. XXIV, 1. 9
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«9

4a8a9-a20

(9)

x5x6mcm^
36 (mc + 3 znH)

36 (mc+ 3 n?D)

(10)

(11)

where x. = 4zr2r2, r{ being one of the frequencies of the ethane 
molecule

and x'. = 4 7T2r'2, v- being one of the frequencies of the hexa
deuteroethane molecule.

By insertion of the numerical values from table VI we get 
the equations

«3 = 57.85 • 104
4 + a2
al — 4 0^2
4 a2a3 + 16 axa3 — 4

4 «1«2«3 + «4«5«f>— «1«6 — «2°5 “ «3«4

= 9.618 • 104 (12)
= —11.64-108 (13)
= 1988 • 108 (14)

= (5.412 ±5.902) • 1014 = 5.657 1014. (15) 

= 0.02467 • 104; a8 = 2.5732-104; a9 = 1.7651-104; a10 = ±2.318-104.

All force-constants are measured in dyne cm

The equations (12) — (15) represent 4 equations with 5 un
knowns. It is therefore impossible to find their numerical value
without making any physical assumption. We now want to use 
the ‘empirical’ rule cited on page 3.

The hydrogen atoms numbers 2, 3 and 4 are displaced to
wards C (1). The amplitude components are:



Nr. 1 19

By insertion of these values in the definition equations for 
the symmetry coordinates we get:

Ä\=4|/2; S2 = l; S5 = -1 ; S6 = 4|/2.

The remaining symmetry coordinates are equal to zero. If we 
denote the force acting upon A’-atom number i in the direction 
of the ¿7-axis by AFx(i)(i7), we may write:

ÅH(5)(Z) = — «2 — 2 P 2 «4 + «8 — 2 l/2 flio

AH(5)(y) = — 8 |/2 Ö! — «4 + 8 |/2 a9 — a10 

W# = 0

ÆC(O)(Z) = — 2 j/2 «5 — I «6 — 3 a8 + 6 j/2 a10

Putting these forces equal to zero we get the three equations:

«1+«10 = 8 |/2 («„—<!,) (2,/')

4|/2«5 + a,+ 6a8-12)/2a10 = 0. (3, f)

(‘/” means: derived on physical assumption).

Now (1,/), (2,/) and (12) are three equations with three unknowns. 
We solve them and find

at= 1.764-104 a2 = 2.560-104 a4 = ± 2.318-104.

But a4 can also be determined from (13) and the values just 
obtained for and a2. We find a4 = ± 2.528-104. The consistency 
between the two ways of calculating a4 must be considered as a 
verification of the ‘empirical rule’ in the present case.

(14) now gives a relation between a? and a8. 4n^4-öß = 
237 • 10s. Another relation between the same two constants is 
available in (3,/). Here two cases arise, dependent upon the 
sign of a10. The calculations, however, show that a10 < 0 means 
that a8 becomes imaginary. As this possibility must be excluded 
on physical grounds it only remains that

2*
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= 5.950-104 and a6 = — 9.763-104 (case 1)
or

= 1.559-104 and a6 = 15.07-IO4 (case 2).

The remaining two possibilities for the numerical values of the 
force-constants are:

«1 «2 «8 Ö4 Ö5 dfj a-, a8 «9 «10

(Case 1) 1.764 2.559 57.85 -2.528 5.950 -9.762 0.0236 2.5732 1.7651 2.318 
(Case 2) 1.764 2.559 57.85 —2.528 1.559 15.07 0.0236 2.5732 1.7651 2.318

A choice between these two possibilities can be made by means 
of (15). We write (15) as

4a1a2a3 —a3a| —565.7-1012 = — a4a5a6 + iqa2 + a2ar.

In both cases the left-hand side has the value 109.8-1012.
In case 1 the right-hand side becomes 111.9-IO12, in case 2, 
466.7 • 1012. Thus case 1 must be the correct one and the 
numerical conformity found is a new confirmation of the validity 
of the empirical rule in the present case.

We finish this chapter by comparing the experimentally 
determined frequencies of the non-degenerate vibrations of ethane 
and hexadeuteroethane with frequencies calculated on the basis 
of the force-constants of case (1) above.

Experimentally 
determined

Calculated in 
this paper

• • • ;.............. . . . 993 1037
r2. . .“ . . . . 1375 1344
*3......... .... 2925 2925
J'5........ 1380 1395
f'e ’ • ’- ........... . . 2925 2917
v\ ............... 852 805

9v*............... 1158 1203
fVo............... 2115 2108

V ................... 1072 1060
^6......................... 2100 2106
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4. Effect of the Choice of Model.

In order lo see what effect the choice of model has on the 
numerical values of the force-constants the preceding calculations 
are repeated on the basis of slightly altered frequency values. 
At the choice of these values there is an infinite number of 
possibilities. A special interest would be connected with a model 
the vibration frequencies of which were derived from the experi
mental ones by correcting them for anharmonicity. But such 
correction could not be carried through at present. As the an
harmonicity as a rule is greater at hydrogen- than at deuterium
vibrations I have arbitrarily chosen to consider a model with 
hydrogen frequencies which are 2 per cent, higher than the cor
responding values of table VI except in the A2u-class, where only 
1 per cent, is added1). The deuterium frequencies are taken over
without change. Theoretical Ratio for

product rule ratio frequencies chosen
A, ................ . . . . 2.00 2.04tg
^2u............. . . . . 1.83 1.83

The frequency values chosen are more in harmony with the 
product rule than the experimentally determined ones. But the 
author wants to stress, that this should not be considered a 
sign that the molecular model to be built up on the basis of 
such corrected values is a belter approximation to the ‘real’ 
molecule, not even if we had succeeded in finding the true 
‘harmonical’ frequencies.

By means of the slightly altered frequency values the cal
culation of a new set of force-constants could be made in exactly 
the same way as was shown on pages 18—20. Beneath the force
constants of this second model (model 2) are compared with 
the force-constants of the model first considered (model 1).

constants result.

at a2 «3 «4 05 «6 aj «8 a9 aio
Model 1 . . 1.764 2.560 57.85 —2.528 5.950 -9.762 0.0236 2.573 1.765 2.318
Model 2. . 2.084 2.160 41.76 —1.449 2.898 -6.072 0.0240 1.756 2.072 1.229
Deviation
per cent, 
of middle > 8.3 8.5 16.5 27.2 34.6 23.4 1.0 19.0 7.8 31.0
number

i) If 2 per cent, are added in this symmetry class, imaginary force-
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Table VIII.

As is seen the ‘cross product constants’ of the potential 
function (a4,a5,a6 and a10) are rather badly determined.

Si
d2V
dS¡

(?2 V
Value of j. for displacement

considered

dSi
d.Vo

ÔS,
dz0

öS/
dxs

Si 2aiSi + cqSa + U5S3 8 1 2 4- «4 = a 1 3
s2 a4iSi + 2 UoSg 4“ CI0S3 4 f 2 a4 4- 2 a2 = ¡i
S;i «0S1 + U(jS2 -T 2 O3.S3 4 |/ 2 O5 + Og = y 1
s4 2 a-,Si 0 1
s5 2 ctsSñ 4~ öioSg — 2 as 4~ 4 [ 2 ajo = d -3
So «10S5 + 2 UgSß — «io 4~ 3 |/2 ag = E V3
Si a 2 UllSvn 4- U14Sg(l + air>Sgo 4 1 2 an — 4 Oi4 — 4 |/2 ais = .4 -b

s8a OnSla 4" 2ai2S8<, 4- «lßSg(l 2^2 014 —8a12 —4 f2a10 = B 1 \ 2 5 
a

S9(, flisSva 4- «loSsa 4" 2ai35<ja 2 |/2 ais — 4 am — 8 [2On = C
SlOH 2O17S10<i 4- flSoSiia 4“ «21S12„ — 8|/2an —2|/2a204-2a2i = 1)
Sil a ojoSion + 2ai8Sn„ 4" assSisa — 4 J/ 2 o-o — 4 lz 2 ais 4- 2 «22 = A" -3

S12a a21Si0a 4“ O22S11« 4“ 2 OigSi2(l — 4 f 2 a2i — 2 |/2 O22 4~ 4 a19 = F

Equation number: (1) (2) (3)

5. Attempt to Calculate Force-Constants 
of Degenerate Classes.

Solving the determinantal equation of e. g. the Eu-class we 
find that

2a174-a19 = 2.207 • 104
8a17a184~ 4a18a19 — 2oo“0- a22 = 51.33 • 108
°21 O17O19 = 3.233 • 108
4 O17a18a19 4- o20a21a22 — a17a|2 — ai8ah --o19a20 = 5.240 • 1012
«18 = 5.657 • 104

This is easily seen to be insufficient knowledge if we want 
to find the numerical values of the force-constants ol9—a22. In 
order to get more information of the force-constants we use the 
‘empirical rule’, displacing a single hydrogen atom towards its
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dS¡ dSi dS¡ dS, dS¡ dS¡ <) .S; dSi dS¡ dSt dSt dSi dS¡ dSt dS¡

, dy3 dz3 dy. dxo dyo dz0\ dyo dzo dx3 dys dz3 dyo dzb dxo dyo dzß

1
- 1

2
1
- V 3 -1

1
1

V3 1
-1

— 2

1
V3 1

1

-1 3
1 1

1 -/3(
1 -3

1 -V3
1 1

-1 V3
1

1 _ 2 V3 1 13 1 2 -1 3 -1
- 1 1 1 3 -1 -1 -1

— 2 -4 2 0 _2 -4 2

-1 -2 1 3 1 1 3 -1 2 V3 1
-1 2 V3 -1 |/3 - 1 -2 -1/3 1

1 1 1 b 1 -1 -1

1 1 2V2^
a 1 _2 1

(4) (5) (6) (7) (8) (9) (10)

adjoining carbon atom and putting the forces acting upon all 
the other atoms equal to zero. Thus,

*2=0 ÿ2=—2|/2 z2=—1,

and consequently

.S',= 4|/2; Sa= 1; S5 = -l;

S, = 4/2; S,a=2j/2; S8a=-4;

S9a=-4/2; .S10a=-4)/2; Sllo=-2|/2; S,2„ = 2,

whether the stereochemical model is I)3/l or 7)3d. All other Sf = 0.
Table VIII gives a good survey of the way in which to find 

the relations that could be derived by means of the ‘empirical 
rule’. These relations could all be written in the general form:

-2KX(I)(O =
d2V_ y--82VdS(
du, dS, du,'
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The ten equations that can be derived from table VIII
are

A • b + 4 j/2 -B a + 3E 0 (1)
/ —3J = 0 (2)

a + e _L1 C + D 0 (3)
a + e— A — C —D + E 0 (4)

ß + Ó -2B + F = 0 (5)
2« -2f+A — 2 C+2D+E = 0 (6)

+ Ô -4B -2 F = 0 (7)
— a + e -C + D 0 (8)
— a + e + A + C -D+E 0 (9)

ß + a + 2B + F = 0 (10)

By eliminating the unknown quantities A—F from these equa
tions it could immediately be tested, whether they are correct
or not. We get:

A = -E-, B = C = ~E-,
41/2 2

n=‘ß;
2 21/2

and finally derive the following three equations between the
wellknown quantities a, ß, /, ô, and c:

— a + e — 0 (4,/)
¿+Ó = 0 (5» /)
/—3Ô = () (6J)

a + t = j/2 (ß — <)) (7J)

Here (4,/), (5, f) and (6, f) simply are identical with the 
earlier derived equations (2, f), (l,f) and (3,/) (page 19). The 
consequences of these three equations were shown to be correct. 
However, (7,/*) is certainly wrong. By insertion of the numerical 
values of the force-constants given on page 21 (model 1) the 
left-hand side becomes + 35-104 while the right-hand side be
comes— 24-IO4. This definite inequality is furthermore seen 
to be independent of the choice of model.

Table IX gives exactly the same result.
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6. Difficulties of Further Physical Treatment.

At a first glance it seems peculiar that the first use of the 
empirical rule made in this paper gives correct results, while 
the use of the rule just made above leads to at least one false

equation. A priori one would reason that the disturbance of the 
molecule made by displacing one hydrogen atom must be much 
less than by displacing three. If, however, one tries to penetrate 
deeper into the problem great difficulties are at once met with.

We start with drawing the attention to the original paper 
by Heitler and London1) and by Siugura2) on the prototype of 

b Heitler and London, Zeits. f. Physik, 44, 455 (1927).
2) Siugura, ibid. 45, 484 (1927).
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thus

molecule.

which means repulsive Coulomb forces b. This shows that 

if the attribution of the Coulomb energy to the total 
12 is rather small, the Coulomb forces are of

molecules, the hydrogen molecule. Fig. 3 reproduces the essen
tial features in a figure from the paper of Siugura.

is the ‘Coulomb’ integral, which corresponds to the clas
sical interaction energy between the two hydrogen atoms. R is 

the distance between the two hydrogen nuclei, 

measuring the Coulomb forces acting within the
ÖE o

is the ‘exchange’ energy and---- similarly

may be called the ‘exchange’ forces within the
The force zero acting upon a hydrogen atom in the equili- 

position is seen to be a result of a positive value of

i. e. attractive exchange forces, and a negative value of

brium
Ö/ii2

dR ’
8En .
dR ’

even i
energy En +E:
the same order of magnitude as the exchange forces in the 
vicinity of the equilibrium position. Consider e. g. the 

$ I
point where — 02). Here the exchange forces are equal to 

zero. This happens for R<Re. At this point repulsive forces are 
acting upon the hydrogen atoms trying to restitute the equili
brium position. This force is solely due to Coulomb inter
action.

^11 is 
dR

molecule. — Ei2.

measures what

If this result is generalized to be valid for all molecular for
mation, it means that chemical affinity is roughly determined 
by the exchange forces. But the exact position of the nuclei in 
the equilibrium position is determined by a compromise between 
exchange forces and Coulomb forces of equal sizes but opposite 
directions.

When one or more atoms of a molecule are displaced 
from the equilibrium position, the problem, therefore, is to ac
count for the hange in two great forces, exchange and Coulomb 
forces. Consequently it generally lies beyond the reach of qua
litative arguing to give reasons why e. g. the ‘empirical rule’ 
could be used with success in one case and not in the other.

O Points marked with circles,
2) Points marked with triangles.
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In future work the author hopes to be able to carry through a 
quantitative or semi-quantitative treatment of this and similar 
problems.

V. Summary.
(1) The equations between the vibration frequencies of ethane 

and hexadeuteroethane and the force-constants of the general 
quadratic potential function have been found, for both the Z>3d 
and the D3h model.

(2) Numerical values are found for all the force-constants 
of the non-degenerate classes. In two independent ways the 
correctness of the values could be stated.

(3) The dependence of the numerical values of the force
constants upon the frequency numbers is demonstrated.

(4) The use of the ‘empirical rule’ in the case of the dege
nerate classes leads into error. Attempts to lind the error by a 
physical analysis meet with difficulties, the fundamental features 
of which have been emphasized.

The author wants to thank Professor Langseth for interesting 
discussions on the subject.
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